ROCHESTER CITY SCHOOL DISTRICT

Pre-Calculus

Thanksgiving Assessment

STEM High School

2013 - 2014

(student)	
Mr. Samuel Simpson	
(teacher)	

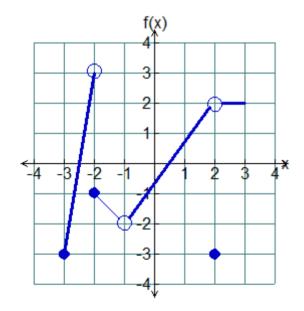
Students must have access to a graphing calculator.

Part I

<u>Directions:</u> Answer each question in Part I, a correct answer will receive two (2) credits. No Partial credit will be allowed. Answer must be recorded on the separate answer sheet provided.

1. Determine the domain of

$$g(x) = \frac{2x}{\sqrt{3x-2}}.$$

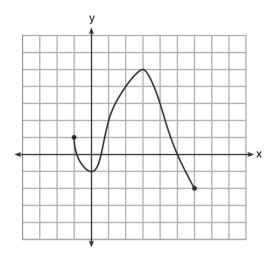

a) $x > \frac{2}{3}$

b)
$$x \ge \frac{2}{3}$$

c) $x \le \frac{2}{3}$

d)
$$x > 0$$

2. The graph of f(x) is shown below. What is the value of f(-2)?


a) -2

b) -1

c) 3

d) undefined

3. What is the domain of the function shown below?

a)
$$-1 \le x \le 6$$

b)
$$-1 \le y \le 6$$

c)
$$-2 \le x \le 5$$

d)
$$-2 \le y \le 5$$

4. Which equation is the inverse of y = 3x?

a)
$$y = \frac{1}{3}x$$

b)
$$x = 3$$

c)
$$y = 3$$

d)
$$x = \frac{y}{3}$$

- 5. If $f(x) = \frac{1}{2}x 3$ and g(x) = 2x + 5, what is the value of $(g \circ f)(4)$?
- a) -13

b) 3.5

c) 3

d) 6

- 6. What is the value of x in the equation $2^{3x-1} = 32$
- a) 1

b) 2

c) 11

- d) 16
- 7. The product of $(3 + \sqrt{5})$ and $(3 \sqrt{5})$ is
 - (1) $4 6\sqrt{5}$

(3) 14

(2) $14 - 6\sqrt{5}$

- (4) 4
- 8. The expression $2i^2 + 3i^3$ is equivalent to
 - (1) -2 3i

(3) -2 + 3i

(2) 2 - 3i

- (4) 2 + 3i
- 9. What is the value of x in the equation $9^{3x+1} = 27^{x+2}$?
 - (1) 1

(3) $\frac{1}{2}$

(2) $\frac{1}{3}$

 $(4) \frac{4}{3}$

- 10. When simplified, the expression $\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}$ is equivalent to
 - (1) w^{-7}

(3) w^7

(2) w^2

- $(4) w^{14}$
- 11. Which values of x are in the solution set of the following system of equations?

$$y = 3x - 6$$
$$y = x^2 - x - 6$$

(1) 0, -4

(3) 6, -2

(2) 0, 4

- (4) -6, 2
- 12. The roots of the equation $9x^2 + 3x 4 = 0$ are
 - (1) imaginary
 - (2) real, rational, and equal
 - (3) real, rational, and unequal
 - (4) real, irrational, and unequal
- When $x^{-1} 1$ is divided by x 1, the quotient is
 - (1) -1

(3) $\frac{1}{x^2}$

(2) $-\frac{1}{x}$

(4) $\frac{1}{(x-1)^2}$

The fraction $\frac{3}{\sqrt{3a^2b}}$ is equivalent to

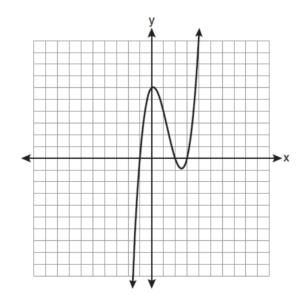
$$(1) \ \frac{1}{a\sqrt{b}}$$

$$(3) \ \frac{\sqrt{3b}}{ab}$$

(2)
$$\frac{\sqrt{b}}{ab}$$

(4)
$$\frac{\sqrt{3}}{a}$$

The minimum point on the graph of the equation y = f(x) is (-1, -3). What is the minimum point on the graph of the equation y = f(x) + 5?


$$(1)$$
 $(-1,2)$

$$(3)$$
 $(4,-3)$

$$(2)$$
 $(-1,-8)$

$$(4) (-6, -3)$$

16. The graph of $y = x^3 - 4x^2 + x + 6$ is shown below.

What is the product of the roots of the equation $x^3 - 4x^2 + x + 6 = 0$?

$$(1) -36$$

$$(3)$$
 6

$$(2) -6$$

$$(4)$$
 4

What is the conjugate of -2 + 3i?

(1) -3 + 2i

(3) 2 - 3i

(2) -2 - 3i

(4) 3 + 2i

The expression $(x^2 - 1)^{-\frac{2}{3}}$ is equivalent to

(1) $\sqrt[3]{(x^2-1)^2}$

(3) $\sqrt{(x^2-1)^3}$

(2) $\frac{1}{\sqrt[3]{(x^2-1)^2}}$

(4) $\frac{1}{\sqrt{(x^2-1)^3}}$

19. The equation $x^2 + y^2 - 2x + 6y + 3 = 0$ is equivalent to

- (1) $(x-1)^2 + (y+3)^2 = -3$
- (2) $(x-1)^2 + (y+3)^2 = 7$
- (3) $(x + 1)^2 + (y + 3)^2 = 7$
- $(4) (x + 1)^2 + (y + 3)^2 = 10$

20. The solution set of the equation $\sqrt{x+3} = 3 - x$ is

(1) $\{1\}$

(3) $\{1, 6\}$

 $(2) \{0\}$

(4) {2, 3}

Pre-Calculus Reference Sheet

Standard Form of a **Quadratic Equation**

$$ax^2 + bx + c = 0$$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(where $ax^2 + bx + c = 0, a \neq 0$)

Compounding Interest Formulas

Periodic: $A = P (1 + \frac{r}{n})^{nt}$

Continuous: $A = Pe^{rt}$

(where A is the amount due on a principal P invested for t years at an annual interest rate r

compounded n times per year)

Combination and Permutation Formulas

Combination:

$$_{n}C_{r} = C(n, r) = \frac{n!}{(n-r)! \ r!}$$

Permutation:

$$_{n}P_{r} = P(n, r) = \frac{n!}{(n-r)!}$$

Sequences and Series

Arithmetic sequence: $a_n = a_1 + (n-1)d$

Arithmetic series: $S_n = \frac{n}{2} (a_1 + a_n)$

(where a_1 is the first term, n is the number of the term, d is the common difference, r is the common ratio, a_n is the *n*th term and S_n is the sum of the first n terms)

Geometric sequence: $a_n = a_1 r^{n-1}$ or $a_n = a_{n-1} r$

Geometric series: $S_n = \frac{a_1 - a_1 r^n}{1 - r}$, where $r \neq 1$

Infinite Geometric series: $\sum_{k=0}^{\infty} ar^{k-1} = \frac{a}{1-r}$, if -1 < r < 1

General Formula for Growth and Decay

 $A = A_0 e^{kt}$ (where A is the amount at the time t, A_0 is the amount at t = 0, and k is a constant) $e \approx 2.718$

Descriptive Statistics

For a set of paired data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$:

correlation coefficient
$$= \frac{n(x_1y_1 + ... + x_ny_n) - (x_1 + ... + x_n)(y_1 + ... + y_n)}{\sqrt{\{[n(x_1^2 + ... + x_n^2) - (x_1 + ... + x_n)^2][n(y_1^2 + ... + y_n^2) - (y_1 + ... + y_n)^2]\}}}$$

The equation of the least squares regression line for the data is $y = \overline{y} + b$ $(x - \overline{x})$, where \overline{x} and \overline{y} are the means of the x and y values and

$$b = \frac{n(x_1y_1 + \dots + x_ny_n) - (x_1 + \dots + x_n)(y_1 + \dots + y_n)}{n(x_1^2 + \dots + x_n^2) - (x_1 + \dots + x_n)^2}$$

ROCHESTER CITY SCHOOL **DISTRICT**

PRECALCULUS PRE ASSESSMENT OCTOBER 2013

ANSWER SHEET

Part I Score:	-
Total Score: Rater's Initials:	-

PUPIL:	TEACHER:						
SCHOOL:	GRADE:						
Your answers to Part I should be recorded on this answer sheet.							
<u>PART I</u>							

ANSWER ONLY <u>15</u> QUESTIONS FROM THIS PART.							
1.		8.		15.			
2.		9.		16.			
3.		10.		17.			
4.		11.		18.			
5.		12.		19.			
6.		13.		20.			
7.		14.					